Creatinine is produced in vivo by an irreversible, non-enzymatic process. This occurs at an almost constant rate, such that about 2 % of the body's creatine and phosphocreatine pool (mostly present in muscle) is converted to creatinine each day. Once it reaches the blood stream, creatinine is filtered freely by glomeruli and is neither reabsorbed nor secreted significantly by renal tubules.
The main reasons are to detect and/or monitor acute kidney injury (AKI) and chronic kidney disease (CKD).
The concentration of creatinine in blood (i.e. in either plasma or serum) is principally interpreted in relation to renal elimination. When renal function decreases beyond a certain point, an increase in blood creatinine concentration (hypercreatininemia) ensues, usually accompanied by increased urea concentration. "Azotemia" refers to an increases in either or both of these analytes, but the focus here is on creatinine, because of its central role in the IRIS protocols for Staging CKD and for Grading AKI.
Although hypercreatininemia occurs with substantial renal dysfunction, some other possibilities have to be considered as well, because moderate hypercreatininemia could also be related to:
While measurement of blood creatinine concentration is very useful, some limitations have to be kept in mind. In particular, note that the relationship between creatinine and glomerular filtration rate (GFR) is curvilinear (Figure 2), and therefore:
The use of serum creatinine as a GFR marker has been questioned due to the above mentioned physiological factors influencing it. Alternative surrogate markers of glomerular filtration rate not influenced by muscle mass include Cystatin C and symmetric dimethylarginine (SDMA). These have been suggested to be better performing blood biomarkers of renal function in humans and animals. However, the data in dogs and cat is limited and one recent study indicated that creatinine is not inferior to either Cystatin C or SDMA, when compared to measured GFR in 97 dogs 2
1. Coyne M SD, Clements C, McCrann 3rd D, Olavessen L. Association between breed and renal biomarkers of glomerular filtration rate in dogs. Veterinary Record 2020;187:ePub.
2. Pelander L, Haggstrom J, Larsson A, et al. Comparison of the diagnostic value of symmetric dimethylarginine, cystatin C, and creatinine for detection of decreased glomerular filtration rate in dogs. Journal of Veterinary Internal Medicine 2019;33:630-639.
Braun JP, Lefebvre HP. Kidney function and damage. In: Clinical biochemistry of domestic animals, 6th Edition, Kaneko JJ, Harvey JW, Bruss ML (eds), Academic Press, Burlington, MA, 2008, pp.485-528.
Pressler BM. Clinical approach to advanced renal function testing in dogs and cats. Veterinary Clinics of North America: Small Animal Practice 2013;43:1193-1208.
The previous version was written by HP Lefebvre and ADJ Watson (2015)