Practising veterinarians use information from several sources to detect kidney disease, including elements from the history, physical examination and various diagnostic aids (for example, urine specific gravity and protein content, blood creatinine and urea concentrations, renal imaging...). In most cases, careful consideration of these findings will enable the clinician to determine whether overall kidney function is significantly compromised.
But the decision is not always clear-cut and some difficult cases remain – for example, those with polyuria/polydipsia where other diagnostic possibilities have been excluded, or where there is persistent, unexplained azotaemia.
In such instances, further assessment of renal function might be desired. One approach might be to institute "watchful waiting", that is, to continue monitoring and to reassess at intervals subsequently.
An alternative could be to determine the dog's glomerular filtration rate (GFR), as GFR is considered to be the single most useful and sensitive indicator of overall renal function. One recent study demonstrates that measurement of GFR is useful in non-azotemic dogs.1
In the past, GFR assessment has been considered impractical in most veterinary clinics, but two recently described plasma clearance methods have improved the situation.
Both these methods require repeated blood sampling over a period of several hours following intravenous administration of a suitable marker. A suitable marker is a substance that is filtered freely by glomeruli, undergoes no renal tubular resorption or secretion, and is neither metabolized nor eliminated by extrarenal means. Both iohexol and creatinine have been shown to be suitable markers in dogs and cats. While laboratory analysis of serum creatinine analysis is available to the practitioner, medical grade creatinine suitable for i.v. injection is not. Iohexol, however, is sold as a medical grade reagent for diagnostic imaging, and analysis of iohexol is commercially available (see below) through a limited number of centres.
Using these techniques, GFR can be estimated by measuring the plasma clearance (Cl) of the marker. Cl is calculated by dividing the intravenous dose administered (D) by the area under the curve (AUC) of plasma concentration plotted against time (i.e., GFR = Cl = D/AUC). The AUC is determined manually or by computer using a 1-compartment or 2-compartment model, or by the trapezoidal method (Heiene and Moe 1998). If using creatinine, first subtract the basal (preinjection) sample value from the measured concentrations in each of the other timed samples.
Whichever method is chosen, accuracy is important for the dose of marker administered and the exact times samples are collected – errors with either will give false results when calculating GFR. For example, if the 120 minute sample is collected 4 minutes late, record the collection time as 124 minutes, because it is this exact sampling time that is required when calculating AUC and therefore GFR.
Further studies are needed to clarify reference ranges for GFR in dogs, and these may depend on the method chosen and some laboratory factors. However, most published GFR values for dogs are from approximately 2 to 5 ml/min/kg, so values < 1.5 ml/min/kg can be considered abnormal (Heiene and Lefebvre 2007).
Presented here is a summary of the techniques used to measure GFR with iohexol and creatinine. More detailed information on GFR assessment can be found in the accompanying article "Glomerular filtration rate in dogs and cats" (www.iris-kidney.com).
Materials required
Procedure
Advantages
Disadvantages
Materials required
Procedure
Advantages
Disadvantages
1. McKenna M, Pelligand L, Elliott J, et al. Clinical utility of estimation of glomerular filtration rate in dogs. Journal of Veterinary Internal Medicine 2020;34:195-205.
Heiene R and Lefebvre HP (2007) Assessment of renal function. In "BSAVA Manual of Canine and Feline Nephrology and Urology" 2nd edn, eds J Elliott and GF Grauer, pp 117-125.
Heiene R and Lefebvre HP (2013) Glomerular filtration rate in dogs and cats (www.iris-kidney.com)
Heiene R and Moe (1999) The relationship between some plasma clearance methods for estimation of glomerular filtration rate in dogs with pyometra. J Vet Intern Med 13:587-596.
The previous text was written by R Heiene, HP Lefebvre and ADJ Watson (2015)